

Энергоучёт Энергоэффективность Энергоменеджмент

Значение системы для управления предприятием

позволяет выполнять оптимизацию потребления энергоресурсов

улучшает качество взаимодействия и уровень вовлеченности персонала обеспечивает оперативность и обоснованность принятия управленческих решений позволяет осуществлять предиктивную аналитику

повышает гибкость производственной системы при различных изменениях

Структура системы

Система КОМПЛЕКСНАЯ ЭФФЕКТИВНОСТЬ

Эффективность энергопотребления

- Энергоучет
- Режимный лист
- Абсолютное и удельное энергопотребление
- Расчет себестоимости

Энергетические базовые линии

- Нормирование расходов энергоресурсов
- Детализация до уровня единиц оборудования

Эффективное управление технологическим процессом

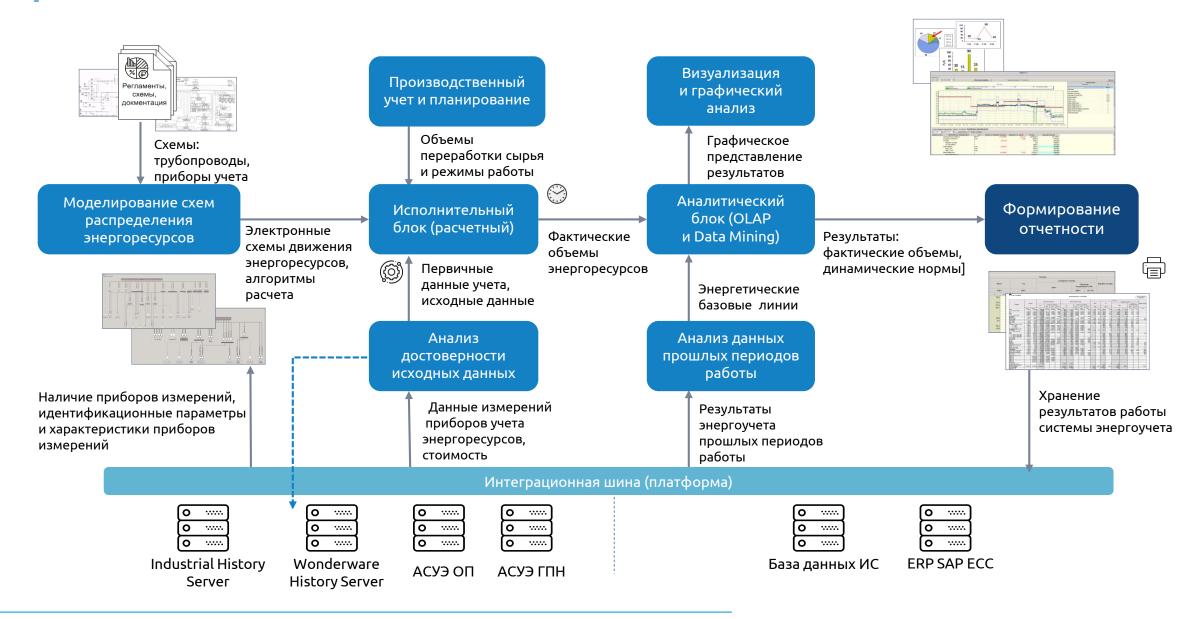
- Контроль соблюдения регламентных норм
- Ключи деблокации СБ и ПАЗ

Эффективная работа оборудования

• Анализ работы технологических печей

Данные

СИСТЕМА ЭНЕРГОМЕНЕДЖМЕНТА

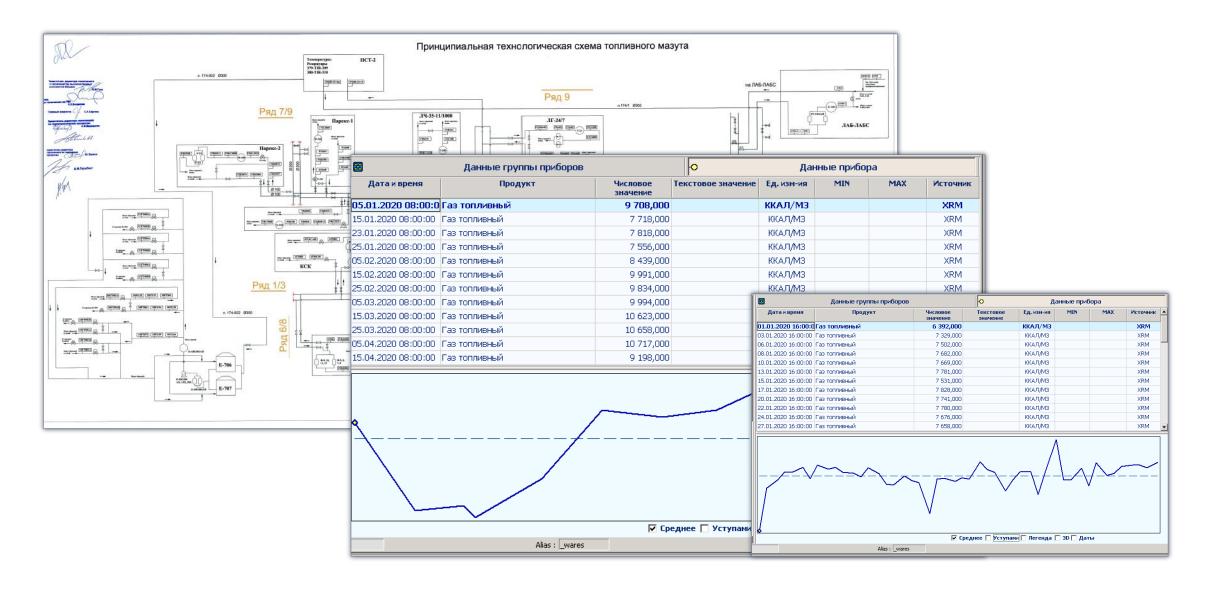

- Блок-схемы производственных процессов
- Показатели эффективности процессов (КРІ)
- Сравнение эффективности объектов

- Энергетические паспорта объектов и оборудования
- Сбор и анализ инициатив по энергосбережению
- Программа энергоэффективности / энергосбережения

Система «Комплексная эффективность»

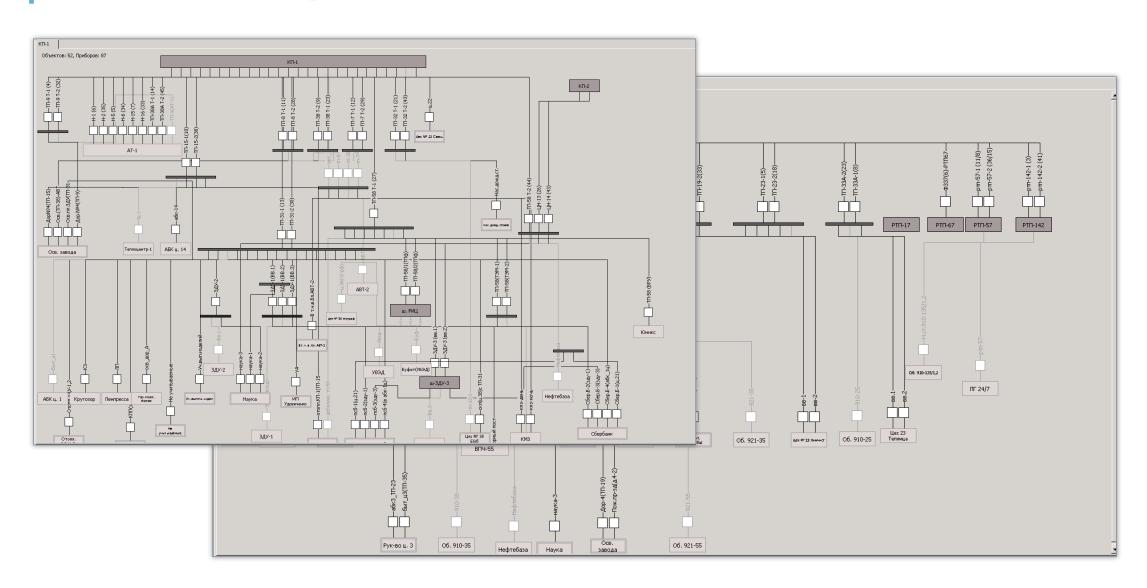
Архитектура системы

Нормативная документация



- 1. №261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации»
- 2. ГОСТ Р ИСО 50001-2012 (ИСО 50001:2011) Системы энергетического менеджмента. Требования
- 3. ГОСТ Р 57912-2017 (ИСО 50006:2014) Системы энергетического менеджмента. Измерение энергетических результатов на основе использования энергетических базовых линий и показателей энергетических результатов. Общие принципы и руководство
- 4. КПД технологических печей. "Упрощенная методика теплотехнических расчетов" проф. Равича М.Б.
- 5. Нормативная документация по организации технического учета топливно-энергетических ресурсов на предприятии

БЛОК 1 Эффективность энергопотребления


Схемы потоков энергоресурсов

Учет электроэнергии, схемы электроснабжения объектов

Методика расчета баланса энергоресурсов

БАЛАНСОВЫЕ УРАВНЕНИЯ.

Общее уравнение баланса жидкого топлива:

Объем поступления = (Поступление жидкого топпика с ПСТ - возврат жидкого гоппика на ПСТ) + поступление Фр. С18 и выше в качестве топпика (см. таблица 2).

Общее уравнение баланса топливного газа:

Объем поступления = Поступление толименого газа с ГРП в кольцо на рехнологические установки (см. таблица 4.1) + Поступление толименого газа собственной выработки/ природного газа/водорода на собственное потребление (см. таблицы 4.2-4.7).

Объемлю требления = Потребление технологическими установками топшивного газа (ТРП, топшивного газа собственной выработни/природного газа/водорода (см. таблица 5) + Потребление вспомогательными объектами (д. Nel, Ne6, Ne41, Ne9, Ne14) (см. таблица 6).

Общее уравнение баланса тепловой энергии (водяной пар):

Объем поступления = Поступление водиного пара с ГРЭС (см. таблица 7) + Поступление водиного пара собственной выработии в сеть завода/на собственное потребление (см. таблицы 8-10).

Объем потребления = Потребление технологическими установками воддного пара с ГРЭС/собственной выработки (см. таблицы 11-13) + Потребление вспомогательными объектами воддного пара с ГРЭС (см. таблицу 14.1, 14.2).

Общее уравнение баланса электрической энергии:

Объем поступления = Поступление электроэнергии согласно данным коммерческого учета. (В настоящее время ангоритмы не введены в систему ввиду отсутствия данных на ервере)

Объем потребления = Потребление технологическими установками (см. таблицы 15,17,19) + Потребление вспомогательными объектами (см. таблицы 16,18). Данных предоставлены ОГЭ (см. Припожение 2)

Баланс жидкого топлива

Для всех технопогических установох данные по расходу мазута на/с установия приводится в <u>Базах</u> данных в массовых единицах, за исключением установия ЭПОУ-АВТ -2.

При исходных данных по расходам в м³/ч пересчет в т/ч осуществляется в системах КИП на технологических объектах.

Ввиду того, что для установин ЭПОУ-АВТ-2 данные по расходу мазута на Industrial сервере приводится в м²/ч, пересчет в м/ч проводится программию в ангоритмах (1):

 $m = v \cdot \rho/1000$

где -объемный расход, м²/ч, -р- плотность, кд/м².

жидкое топливо

Таблица 2 - Поступпение жидкого топпива в кольцо завода

	: 1 aoimma 2 - 11	оступшение	жидкого топшива	в кольцо завода	
l	Объект	Размернос	Номер позвани	Отпосаните	Ангориям расчета поступнения жидкого топинка, т/ч
ш	1	ТЪ			
ı	ПСТ темных	T/4	FQIR -32-16a	Раскод мазута на установки (топшивное	(FQIR -32-16a- FQIR -32-16)
Н	l.			кольцо завода)	
ш		T/4	FQIR -32-16	Расход мазута с установок (гоппивное кольцо	
ш				завода)	
ı	ЛАБ(УПО)	£Σ⁄4	02FIRC-56	Раскод С18 с установки	02FTRC-56/1000

Таблица 3 - Потребление жидкого топпива установками завода

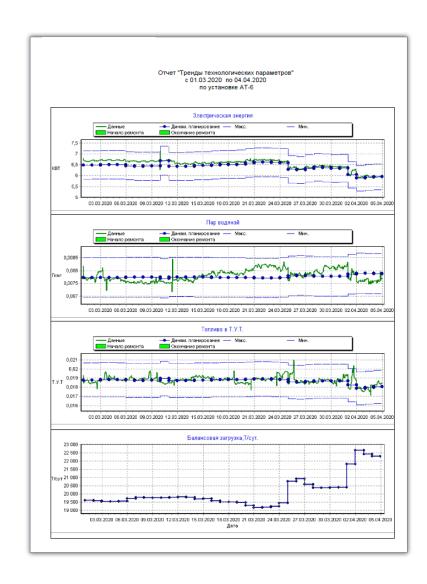
Установка	Размернос тъ	Номер позвани	Оппесание	Алгориям расчета потребления жидкого топшива, тА
ЭЛОУ-АВТ-2	π³Λι	FQIR 5302	Расход топиненого мазута на установку	(FQIR 5302·ρ_FQIR 5302- FQIR 5303·ρ_FQIR
	m³∧r	FQIR 5303	Расход топиненого мазута с установки	5303)/1000*
ЭЛОУ-АВТ-6	τAι	FIRA 501	Расход топиненого мазута на установку	(FIRA 501- FIR 502)
	τΛι	FIR 502	Расход топиненого мазута с установки	
ЭЛОУ-АТ-1	τΛι	FQI5302	Расход топивиного мазута прамого перед Т-	(FQL5302- FQL5303)
			6/2	
	τAt	FQI5303	Расход топпивного мазута образного поспе	
			печей	
ЭЛОУ-АТ-6	τAt	FIRA 702	Расход топпиеного мазута на установку	(FIRA 702 - FIR 703)
	τAι	FIR 703	Расход топиненого мазута с установки	
Енгумная 1	et/4	FQR 1430	Расход жидкого топпива на установку	(FQR 1430- FIR 1431)/1000
(19/6)	ET/4	FIR 1431	Расход жидкого топпива на возвраге в сеть	
Л-35-11/600	τΛı	FIR-258	Расход мазута на установку	(FIR-258 - FIR-259)
	τΛι	FIR-259	Расход мазута с установки	
Л-35-11/300	τΛι	FIR-93	Расход мазута на установку	(FIR-93- FIR-94)
	τΛι	FIR-94	Расход мазута с установки	
ЛЧ-35-11/600	τΛι	FR-3316	Расход прямого мазута к П-602	(FR-3316- FR-3317)
	τAt	FR-3317	Раскод обрати мазута от П-602	
ЛЧ-35-11/1000	τΛι	FIR-214	Расход мазута на установку	(FIR-214- FIR-215)
	τΛι	FIR-215	Расход мазута с установки	
Л-35-8/300Б	τΛı	FIRA-2150	Расход прямого мазута	(FTRA-2150- FTRA-2152)
	τΛι	FIRA-2152	Расход обратного мазута	

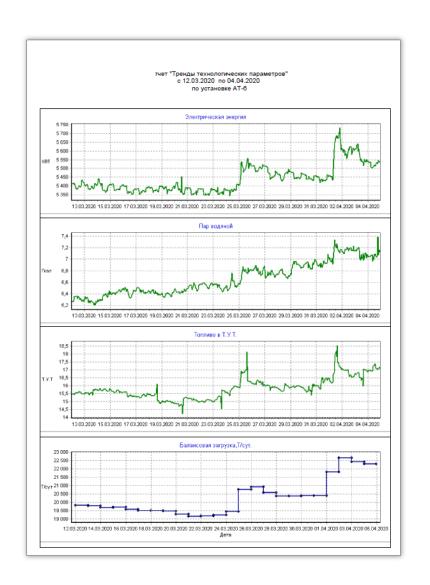
Методика расчета балансов энергоро

Алгоритм расчета расхода энергоресурсов

Установка	Размер- ность	Номер позиции	Описание	Алгоритм р	асчета потребления	и топливно	ого газа, т/ч	Прі	імечание					
ЭЛОУ-АТ-1	м ³ /ч*	FIR 5301	Расход топливного газа перед Т-16	. (ρ ₂₀	FIR 5301 · ρ_375	линия		$\rho_{20} = 0$),5426 кг/м ³					
*На период прос	стоя ГФУ	FIR 5301		· (2117 топливо_Б300_in 2118 efficiency_Парекс_1 2119 efficiency_Парекс_2 2120 efficiency_Л-35-11/60		4a ▲	begin	de of // топливный газ, т): // FTR 5301 r	nacyos B w3/vt		
ЭЛОУ-АВТ-2	м ³ /ч* (м ³ /ч* коррек тир. по Траб., Рраб.)	FQIR 5301 (FY 5301)	Расход топливного газа к печам	γ _{лаб} . газ FY 5301 · γ	2121 efficiency_ЛЧ-35-11/6 2122 efficiency_ЛЧ-35-11/1 2123 efficiency_ЛЧ-36-11/1 2124 efficiency_ABT-6 2125 efficiency_ABT-2 2126 efficiency_AT-6 Потоки Ре		Отчеты Имя	if rashod_1 //Данные : plot : //Заявочные fw_rec //Пересчет rashod //перевод в	O then rashed_1:=0 o HADTHOCTH C FPH = fw_point_get(9736 xapaxrepuctMKM uest_param_get(4271 pacxoxa _1:= rashed_1*sqrt(7/4 _2:=rashed_1*plot/1); 52, Till, Till); , Till, plotZ, p: ;plotZ/plot);	ressZ, tempZ, req_			
*На период прос	стоя ГФУ	FQIR 5301 (FY 5301)		FY · (РМЯ	Значение		repewennym := rashod_2;					
ЭЛОУ-АТ-6	м ³ /ч*	FIR 704	Расход топливного газа на установку	FIR 704 · 	Компонент рго Дата и время начала 9 Дата и время окончан	od_code Since	715 02.04.2019 03.04.2019		masyr, r/x _in := fw_Tagkvg(37 d maz in<0 then ras		60000); // FQIR53	102		
*На период прос	стоя ГФУ	FIR 705	Расход топливного газа к горелкам печей после теплообменника Т-27	FIR 70 · (Haправление (mode) r Targ_id закачки ритр Профиль плана pro	rez_id mode p_targ_id ofile_id		rashod_maz if rasho	out := fw_Taglvg(3 d_maz_out<0 then rs s_nepemennymo ashod_maz_in-rashoo	797, Since, Till ashod_maz_out:=0;	, 60000); // FQIR5	303		
Установка	Размер- ность	Номер позиции	Описание		⊡ : Результат расчета Расход га	asho temp					Электрическая энергия	Тепловая энергия в паре	Ton	ливо
ЭЛОУ-АВТ-6	м ³ /ч*	FIR 503	Расход топливного газа на установку	FIR 503 · p	Плотность 20 pl Плотность	plot plot	Установка		Загру:	зка	эпергия Факт	факт	Мазут Факт	Газ факт
*На период прос	тоя ГФУ	FIR 505	Расход топливного газа к печам	FIR 5	Взлив у Давление рг	wzliv ressu ro ABT-2			План, т 8 550,6	Факт, т 7 039,2	квтч	т	T 41,2	т
	1 2			· (Температура при испь te		ак.бл. АВТ-2*		-	4 289,8	2 922,9 41 180,8	7,1	20,6	-
				L		AT-6 ABT-6			21 471,8 21 884,7	19 552,1 20 250,1	130 022,1 144 738,6	160,2 636,0	72,7 108,7	122,0
						В Т.Ч. В	ак.бл. АВТ-6*		6 700,0	6 732,4	11 289,0	244,2	-	-

- Расчет значений по каждому ресурсу с дискретностью 1 час.
- Сохранение результатов в таблицах данных и отображение в блоках отчетности


Результирующие данные системы «Энергоучет»



Отчетные формы модуля «Энергоучет»

Блок отчетности. Режимный лист. Отчет по отклонениям

Part																						1																			
Part									Режимн	ный лист за 20.04.2020 на 21.04.202	23:21											ı																			
Part					Электриче	ская энергия			Ten	повал энергил в паре					Tonna							ı																			
Part	Установка	3a	грузка	O DET	Удельное г	потребление	Отклонение		acr	Удельное потребление Отклонение	Мазут		Газ				уммарное		5ление*1000 Отклонен	пара уд		н																			
Part		Done T	dag :		-		*				-		факт				v.T			Dran		н																			
The column	ART-2						52		248.3		12	17	100.7		3 1						183 530																				
The control of the co	вак.бл. АВТ-2*										-	-	-		-	-	-		24,0																						
Part		4 411,	5 435,0	46 886,0	8,62668	8,153	5,8	69,4				_			-																		_								
The content of the										•																															
Second S							0,7							Гоппипо	OTKROU		ofinous	40.07.000.00		MILANIMINACKAŬ HAN	Anne		20 -							n _e	TO COOTOR	DOM: 40									
Tell Property Tell Propert					1,73042	-	-						,	. คนาเหลอ:	отклон	ения потр	eoneHi	ол от средне	естатистической д	инамической нор	мы. Апре	onb Zt	eu I.																		
The property The					14 08828	-	_																																		
Part		630,				1 -				Management										День недели, %																					
Part 1996 1779 1781 1782	ЛЧ-35-11/1000	1 889,					2,3			установка	1	2 3	3 4	5	6	7 8	9	10 11	12 13 14	15 16 17	18	19	20	21 :	22 :	23 2	4 25	26	27	28	29	30									
Property	ЛЧ-35-11/600						0,3	32,4	46,8				_																												
Component control 13 27 27 27 27 27 27 27 2		550,	1 094,3		35,13954	34,465	2,0			вак.бл. АВТ-2*		4.0	00 -		7.1	4.0		0.0		0 07				-		\pm															
Properties Pro										A1-1 AT-6					-0.5		4,4			2 8,2 8,7 1		1.1	1.7	-	-	-	_	_	+-	_											
Part 1. 1. 1. 1. 1. 1. 1. 1		402,	381,2	172 864,5	453,47455	455,613	-0,5	88,2								-8.3 -7.9	-8,3	-7,5 -7,5	-7,1 -7,5 -6	2 -62 -66 -	5,8 -6,2	-7,1	-7,5										_								
The content of the	Суммарные ксилолы I,II,III бл.	8 279,	8 945,4	82 834,2	9,25998	-		81,8	113,6	вак.бл. АВТ-6*							_												'												Τ
The Part	в т.ч. I бл.*	3 904,	4 098,4	41 417,1	10,10568	-		52,4	72,7				_						+								_														_
## 1867. 3-555 3-656 3-6		834,	851,6	14 081,8	16,53570	-				в т.ч. Битумная-2*												Эл	ктрическа	я энерги	ія: откло	нения по	треблен	я от сре	днестатис	тическо	й динани	ческой н	орны. Апр	рель 2020	J r.				Дата с	.04.2020	+
## Company (Part Control of Contr											40,8	6,4	6,2 10,	0 11,2	6,6	0,7 0,4	0,9	1,1 2,5			1																	_	_		n
Fig. Cont.											-8.5		-1.1 -1.	0 -0,7	0.7	-0.3 -0.7	-0,5	-0,1 0,8 -4.8 -4.0	3 ×	тановка	1 2	1	4 6	6	7	n 0	10	44 42	43				0 10	20 2	21 22	23 24	26 -	26 27	20	29 20	H.
Fig. (1984) 1984 1984							-1,0			Л-35-11.600									ABT-2		1,9 1	β 1,	1,5 1	1,6 1,7	1,0	0,9 1,	1 2,0	2,4	1,1 3,5	4,4	5,0 5,3	5,4	5,2 5,2	5,2	. 22	25 24	15 12	-	10	10 00	£.
## STATE STA							20				-7,1	-8,4 -	11,0 -9	,9 -10,2	-10,2	-12,3 -15,0	-14,8	-14,9 -17,2	ь вк.бл. ABT-2* AT-1		.31 .3	11 .2	-28 -3	28 .27	-21		1 1							5.8	-	$\overline{}$	=	=	=	=	7
Processing Pro	1 47												_						AT-6		3,5 2	4 2,	1,7 1	1,7 -1,5	2,6				0,5 -0,4					0,8		_	=	=	=	=	4
Property		5 713,	5 627,5	116 476,7	20,69777	20,450	1,2	176,7	252,9													1,4 0,	0,1 4	0,1 -0,1					1,5 0,0	0,7	1,1 1,4	1,6	1,5 1,2	9.7			_	_	\pm	\equiv	1
## Parameters of programme Conf. 15 48 10 10 15 15 15 15 15 15		3 054,	3 013,2	99 591,7	33,05181	34,403	-3,9	205,1											Битуменое производство в т.ч. Битуменая-1*				_	+	+	_	+		+	-	+		_		+	-	+	+	+	+	+
Part		2 588,							650,3		5.1	1.6	-0.4 -4	5 -46	-5.0	-2.4 1.5	1.6	2.8 4.3	8 T.N. Sirryseess 2* DN-35-11/1000		128 .9	15 .8	.89 .0	95 402	22	32 1	5 04		14 17	.04	02 05	1.3	08 10	2.3		==	_	_	=	=	4
Part	ЛЧ-24-9/2000	0.000								в т.ч. блок экстракции*	- 1	- ''	-1.		-1,-											5,8 5,	2 3,5	3,5	1,5 3,7	2,4	2,0 2,2	1,4	0,5 0,1	0,3		=	=	=	=	=	4
Figure F												4.7	54 0		20	00 50	10	20 20			-28,0 -27	39 -21,	-26,2 -26	8,6 -28,5	-27,8	-27,31 -28,	3 -29,3	-29,5	1,8 2,6	2,7	2,9 3,0	3,1	2,9 2,5	2,0			_	\pm		\pm	1
APERCY 1400 154.5 1978 145.1877 146.56 -0 29.3 41.5	DE-24/7										-3,0	-4,7	-5,1 -2 0.2 2	4 -1.3	-3,0	-6,3 -5,6	-4,6	-3,6 -3,6 -3.5 -0.6	ОПК Суммерные ксилолы Ц	JI 6n.	2,2 5	,9 3,	0,5 1	1,2 -0,4	-0,7	-1,3	0,6	0,8	0,1	-1,3 -	1,1 -2,6	-1,2	-1,4 -1,0	-0,5			+	+	+	-	4
APERCY 1400 154.5 1978 145.1877 146.56 -0 29.3 41.5										Каталитический риформинг	-0,2	-2,5	-2,4 2	5 3,7	2,2	-3,4 -3,9	-2,9	-2,2 -1,9	8 T.N.16n.*					\perp							\perp						=	=	=	=	4
Presentation caps Mol 9 8.8 11.4 12.016.3 109.30000 104.28 0.6 162.2 2469 17.0 17																61,7	9,2	7,7 7,7	8 T.H. II Gn.*																		\pm	\pm	\pm	=	1
Powerspace PASC 683,0 680,7 79 8040 116,2178 115,677 20 9331 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 33,1 37,7177 211,229 37,		86,				104,828							-1,8 0.9 2	8 27						бл.	1,7 2	,0 -1, ,5 3,	3,2 3	1,1 -1,9 3,6 4,7	5,9	1,0 1, 4,0 1,	9 1,4	-0,4 -	1,2 -0,3	-0,6	3,0 2,8 2,5 -4,0	3,3 -2,4	2,8 3,1 -2,7 -1,9	4,1		_	+	+	+	+	+
Provisionement RAS 683,0 686,7 79 804.0 116,21787 115,677 20 933.1 27 17777 22 933.1 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17777 27 17	******									ЛГ-24/7					9,7	8,8 8,0	8,9	8,9 9,8	в т.ч. блок экстрекци гфу	,	3.3 3	5 2	0.4	0.8 11	4.6	1.9 -1	6 -3,8	-4.2 -	4,8 -2,1	-4.9	45 -44	-4.4	-5.2 -3.9	-3.9	-		+	-	\vdash		4
Full Department 9.00.4 9.56.4 7.19 7.00.7 7.0													4,2 4,	2 3,4	1,9	1,9 1,1	1,5	2,3 2,3		к фракций	3,3 2	7 2,	3,3 3	3,4 2,7	1,6	-1,2 0,	1 2,9	3,9	2,8 1,8	2,7	2,9 2,8	3,4	3,2 3,3	1,2		=	=	#	\Rightarrow	=	4
Street The control of the contro							-5,4	40,4											Каталитический рифора	Mr.	-0,7 -0	1,3 -0,	-0,2	-0,5	-0,5	-0,9 -1,	7 -1,4	-1,5	1,8 -1,7	4,1	0,9 -1,2	-1,0	-1,2 -1,2	-1,5		=	\pm	\pm	\pm	\pm	1
Provision repair spring Provision repair Prov										упск											0,6 0	,7 0.		0,4 1,5	2,4	-2,2 2, -1,8 -1,	9 -2,5	-3,3 -	2,2 -1,7	-2,0 -	2,5 2,4 1,6 -1,5	-2,4	3,5 3,6 -2,6 -2,5	3,7		\pm	+	\pm	\perp	\pm	\exists
September 12 4800 12 3194 82 9861 6.73702 6.932 -2.8 9852 13853 1386										Производство ЛАБ	-1,3	-3,2	-2,4 -0,	,8 0,3	-2,4	-7,8 -3,3	-3,6	-3,0 -2,1	D-24/6		-9,1 -8	10 -7	-8,2 -6	8,1 -6,2	-4,4	3,7 -6,	1 -23,9	-24,5 -1	7 -11,9	-11,1 -1	1,2 -2,4	-2,8	-2,7 -2,5	-2,5	\blacksquare	_	+	\pm	\Box	\pm	4
Buffspearer 6.287.4 5.987.7 40.203.1 6.74809 6.921 -2.5 147.8 204.1											.38	-38	-41 -4	4 .41	.43	.60 .60		.38 .34	DAPEKC-1		-1,3 -0	1,8 -1,	-0,1	0,1 1,5	1,5	0,2 0,	3 1,2	0,7	0,3 1,2	-0,3	0,8 0,3	-1,1	-0,6 -0,6	-0,3		=	\pm	\pm	\Rightarrow	丰	1
Output a crosses so gas Section										Элементарная серац. №41		6.3	55 6	6 74	5.4	3,4 11,0	17,5	18,0 11,6		9	1,5 -0	,r -3,	1,6	3,0 -2,3 1,6 -1,3	-3,3	-2,8 -3, -0,1 -1,	9 -1,9	-0,6	(,0 -0,8 1,6 -1,1	1,1	0,9 -0,6	0,5	-1,0 -1,5	0,5		_	\pm	\pm	\perp	\pm	1
EOB-1, MS 122 627,5 37 634,1 0, 3064 0, 315 4-2,6 4-2,	Очистка сточных вод, м3			20 197,3				191,7		Производство водорода	0,3	-1,2	-1,0 -0	1 0,7	0,4	-1.6 -3.0	3.5	-2.9 -1.3	УПСК		1,0 1	9 2	1,4 1	1,5 1.5	3,0	4,6 2	9 1,3	0,7	0,5 1,8	0,6	0,6 1.0	1,3	1,1 0.6	0,5	+	$\overline{}$	+-	_	+	+	+
EOB-1, MS												7.5	-5,2 -5, 8.3 7	,5 -5,2 6 6.8	-5,9 7.6				Производство ЛАВС		61,6 1	,3 3,	2,2 2	2,3 4,5	4,0	4,0 3,	2 3,5	3,0	0,5 1,2	0,5	0,6 0,3	0,4	-0,2	-5,4	\rightarrow	=	\vdash	_	=	=	4
EGB_2, us		_						-		Очистка сточных вод, мЗ	1,0	1,0	-10 1	3,0	- ,0	-,0 0,0	1	5,0 0,0	Элементарная сера ц.N	141	0,5 0	1 -0,	-1,1 -3	2,2 3,0	-0,1	-2,1 4,	7 6,2	-8,9 -	5,2 -8,6	-8,0 -	6,1 -4,2	4,2	5,7 -4,0	5,5		=	\pm	士	\perp	\pm	1
608, M3	БОВ-2, м3									БОВ-6, м3		-							Производство водорода		-7,5 -9 1,4 1	,2 -8, ,6 0,	-6,4 -5 0,2 0	5,5 -5,2 0,7 0,7	-10,0	-15,2 -14, -0,5 -0,	6 -12,1	-0,4	4,7 -4,0 1,5 -1,9	-0,2	4,1 -2,4 0,8 -1,3	-3,4	-6,0 -8,5 -2,1 -2,4	-7,0		+	+	+	+	+	+
608, M3	EOR-4 u2	-			0,39182							_	_	+					Висбрекинг	1	-1,8 -0	1,6 -1,	-1,7 (0,1 -2,3	-1,6	-1,5 -1,	0 -2,0	0,3 -	0,2 -0,4	0,1 -	0,5 -0,5	1,3	0,6 2,1	-2,5		=	\vdash	\pm	\vdash	\pm	4
Comparison Com	508-7 M3	+																	50B-6, M3	-	-3,1 -2	7 -1,	-3,2 -4	0,7 0,9	1,0	0,1 -0,	7 -10,3	-3,8 -	1,5 -1,3	-3,5 -	3,3 -2,3	0,3	4,6 2,2	-1,1	\rightarrow	_	\perp	#	\Rightarrow	=	4
80000073T 055-84T3MM		+	122 138,3		0,02174	0,330	7,0		0.00	БОВ-4, м3									60B-1, M3 60B-2, M3		-8,1 -7 2,6 0	,3 -7,	-7,6 -1	7,6 -7,1 1,0	-5,9 0,9	-5,4 -4,	4 -6,3 0 -3,9	-6,7 -	7,6 -2,3 9,1 -3,9	-5,7	4,7 -3,6	-3,4	-3,0 -3,0 -4,3 -4,8	-2,6		_	\pm	\pm	\pm	\pm	Н
Poptyrea dax sonemptope				570 669,7				2 301,1	3 283,7				_	+							1,0 1	A 1,	1,2 1	1,0 1,1	-3.1	-3.3 -4	6 1,9	1,1	2,8 -2,6	4,0	3,9 4,5 1,8 -0.4	4,4 0.3	4,1 4,3 0,3 1.4	4,5	-		+	-	\vdash		4
ИТОГО по заводу 129 582,4 131 167,5 4 526 729,6 15 056,8 20 780,5 1						-							-						60B-7, м3	oficerous	10,8 11	,2 9,	7,2 7	7,0 6,7	8,0	7,4 6,	7 7,0	6,7	4,8 -4,2	-4,5	4,5 -4,7	-4,4	-4,8 -4,9	-4,8	\rightarrow	=	=	#	\Rightarrow	=	4
DECEMBANC M. DOCTOR/PHILE		129 582,	131 167,5	4 526 729,6	_	-	-			ИТОГО по заводу									Продувка фак холлектор	OB CONTRACTOR																=	\pm	士	\pm	\pm	1
HEODINIC, 78		_	1 .		<u> </u>		<u> </u>						_	+					поступление										\perp							\pm	+	\pm	\perp	\pm	1
	деваланс, %		1	1				4,6	5,8	paperoximi Nr. 10									деваланс,%																	_	\Box		\Box	\equiv	J

Работа с отклонениями норм потребления ресурсов

Pencies - 14 10 2022 24:57	▼														
Версия: Расчет от 14.10.2022 04:57															
				Элек	трическая энерги:	1				Тепловая энерг	ия в паре				
Установка	Загруз	ка	Факт	Удел	пьное потребление	•	Отклонение	факт		Удел	ъное потребление	,	Отклонение	Мазу	Т
			Ψακι	факт	план	динам.план.	ОТКЛОНЕНИЕ	факт		факт	план	динам.план.	ОТКЛОНЕНИЕ	фак	т
	План, т	Факт, т	кВт*ч	кВт*ч/т	кВт*ч/т	кВт*ч/т	%	Гкал	т	Гкал/т	Гкал/т	Гкал/т	%	т	т.у.т
BT-2	6 409,9	6 853,4	65 015,7	9,48663	10,81188	9,808	-3,3	94,0	135,7	0,01372	0,01703	0,01418	-3,2	-	
вак.бл. АВТ-2*	-	-	2 600,6	-	-	-	-	7,3	10,3	-	-	-	-	-	
Г-1	4 165,4	4 505,7	42 891,1	9,51930	10,54194	9,481	0,4	52,5	76,3	0,01165	0,01431	0,01251	-6,9	-	
Γ-6	17 049,6	16 529,4	124 237,0	7,51612	7,30199	7,387	1,7	113,3	164,7	0,00685	0,00705	0,00663	3,3	-	
BT-6	17 764,5	17 665,0	141 315,6	7,99975	7,87429	7,596	5,3	322,1	462,2	0,01823	0,01788	0,01700	7,2	-	
вак.бл. АВТ-6*	6 350,0	6 731,6	11 021,6	1,63729	-	-	-	145,5	205,8	0,02161	-	-	-	-	
тумное производство	2 424,2	2 364,0	28 697,7	-	-	-	-	258,1	363,4	-	-	-	-	-	
Битумная-1*	1 212,1	770,0	20 263,6	26,31636	-	-	-	153,7	216,4	0,19961	-	-	-	-	
Битумная-2*	1 212,1	1 594,0	8 434,1	5,29115	-	-	-	104,4	147,0	0,06550	-	-	-	-	
H-35-11/1000	3 061,0	2 925,8	248 768,3	85,02574	86,17752	84,948	0,0	103,7	147,4	0,03544	0,03813	0,03486	1,7	30,3	42
Y-35-11/600	1 420,0	1 079,6	136 228,0	126,18377	117,43248	127,033	-0,7	21,1	30,5	0,01954	0,02718	0,01881	3,9	-	
ПК	268,7	262,5	152 117,2	579,49410	414,09711	590,631	-1,9	75,6	109,3	0,28800	0,24813	0,26386	9,1	5,2	7
уммарные ксилолы I,II,III бл.	4 650,8	6 418,8	78 744,9	12,26785	-	-	-	39,4	55,4	0,00614	-	-	-	-	
I бл.*	4 026,0	3 186,6	39 372,4	12,35561		_		25,2	35,5	0,00791	_	-		-	
П бл.∗	624,8	701,3	13 386,6	19,08826		_		4,3	6,1	0,00613	_	-		-	
Ш бл.*	-	2 530,9	15 749,0	6,22269		-		9,8	13,9	0,00387				-	
уммарные ксилолы IV бл.			10 236,8	-	-	-		26,2	38,2	-	-	-		-	
Г-35-8/300Б	1 048,7	1 063,2	116 029,8	109,13262	106,45772	106,282	2,7	598,1	842,4	0,56255	0,61262	0,45789	22,9		
Блок экстракции*	1 048,7	1 063,2	13 459,5	12,65942	100,10772	100,202		568,0	800,0	0,53424		- 0,10702	-	_	
фУ экстракции ФУ	1 239,6	1 172,7	67 636,9	57,67622	56,00025	54,201	6,4	815,0	1 153,1	0,69498	0,71901	0,74888	-7,2	_	
идроочистка бензиновых фракций	1 239,0	11/2,/	07 030,9	37,07022	30,00023	34,201	0,1	20,0	29,2	0,09190	0,71901	0,71000	-7,2		
омеризация	-		520,7		-	_		20,0	27,2			-			
аталитический риформинг		-	5 216,5		-	-		4,4	6,4	-	-	-	-	_	
ч-24-9/2000	4 137,2	3 954,2	56 975,5	14,40886	15,65579	14,234	1,2		200,8	0,03568	0,03465	0,03708	-3,8	-	
								141,1						-	
-24-10/2000 -24/6	4 167,2	4 156,6	220 870,4	53,13728	54,30315	53,968	-1,5	143,0	201,6	0,03440	0,02686	0,03308	4,0	-	
	2 890,5	2 611,7	47 101,4	18,03477	20,75737	21,692	-16,9	132,6	189,1	0,05077	0,07705	0,07393	-31,3	-	
Γ-24/7	3 372,4	3 793,2	77 806,4	20,51207	20,72799	19,043	7,7	124,9	179,0	0,03293	0,02286	0,03193	3,1	-	
APEKC-1	1 242,4	1 972,5	228 409,2	115,79681	169,26941	118,971	-2,7	41,2	58,4	0,02089	0,02560	0,01874	11,5	-	
APEKC-2	1 603,9	-	63 659,2	-	450.005	-	-	18,2	25,9	- 4.7406		-	-	•	
лементарная сера ц.№9	94,6	125,1	13 119,9	104,87530	152,99841	96,421	8,8	146,9	224,0	1,17426	1,72405	1,13114	3,8	-	
пск	100,9	-	21 005,4	-	-	-	-			-	-	-	-	-	
роизводство ЛАБ	676,3	625,4	80 568,1	128,82651		129,299	-0,4	171,3	241,2	0,27390	-	0,24875	10,1	10,4	14
ооизводство ЛАБС	152,7	160,8	36 867,2	229,27363	216,18127	243,249	-5,7 X		53,1	0,23445 X	0,15295		13,9	-	
дрокрекинг	8 379,5	7 882,7	749 000,0	95,01820	87,24808	88,086	7,9	1 424,9	2 006,9	0,18076	0,17156	0,17722	2,0	-	
пементарная сера ц.Nº41	189,4	206,2	22 250,1	107,90543	115,94323	113,727	-5,1	325,0	428,4	1,57614	1,78662	1,61869	-2,6	-	
оизводство водорода	1 901,7	2 047,5	71 996,1	35,16293	37,95970	34,372	2,3	3 935,9	5 194,6	1,92230	1,65199	1,89962	1,2	-	
к.дист.+Висбрекинг,в т.ч	18 720,0	18 351,7	128 000,0	6,97483	-	-	-	1 028,2	1 447,9	0,05603	-	-	-	-	
Вакуумная дистилляция	12 480,0	12 172,7	86 296,9	7,08938	7,07586	7,015	1,1	936,2	1 318,5	0,07691	0,07519	0,08156	-5,7	-	
Висбрекинг	6 240,0	6 179,0	41 703,1	6,74917	6,55678	6,310	7,0	92,1	129,4	0,01491	0,02170	0,01616	-7,7	-	
чистка сточных вод, м3	-	-	20 900,4	-	-	-	-	166,6	234,7	-	-	-	-	-	
DB-6, м3	-	331 979,2	88 559,8	0,26676	0,29723	0,260	2,6	-	-	-	-	-	-	-	
ОВ-1, м3	-	92 157,6	27 877,7	0,30250	0,36296	0,299	1,2	-	-	-	-	-	-	-	
DB-2 M3	_	103 356 3	27 828 7	0.26025	0.31633	0.266	1.2								

Работа с отклонениями норм потребления ресурсов

			Отк	лонение				Cor	гласование КИНЕФ				
№ кумент.	Дата создания	Тип отклонения	Цех	Установка	Продукт	Дата документа (отклонения)	Статус	Ответственный	Дата/время	Пр	имечание	Статус	
16	24.12.2021 8:39:00	Другое	Цех № 8	ЛГ-24/7	Топливо	22.12.2021	Технолог: Согласовано	Толмачев Антон Валентинович	28.12.2021 13:29:00	потребление 21.12 - 10,8;	сов вышли на 115. Удельное 22.12 - 10,5; 23.12 - 10,3. По йл с расходом ТГ и загрузками	Отработано	Золотов Миха
17	24.12.2021 13:20:00	Другое	Цех № 8	ЛГ-24/7	Топливо	23.12.2021	Создание/Редактировани	е Толмачев Антон Валентинович	24.12.2021 15:52:00	Когда вышли на 115? Како стало? Какое общее потре	ре удельное потребление было, оболение было? Экономия?		
18	10.01.2022 14:38:00	Другое	Цех № 8	Л-24/6	Электричество	01.01.2022	Энергетик: Согласовано	Сергеев Сергей Алексеевич	12.01.2022 16:17:00			Отработано	Золотов Миха
19	27.01.2022 10:50:00	Другое	Цех № 8	D-24/6	Электричество	26.01.2022	Гозлание/Релактировани	 Милишников Алексей Валерьевич 	27.01.2022 10:57:00	Все понатно			
21	17.02.2022 10:23:00	Другое		Алкилирование	Электричество	15.02.2022	Цех: Согласовано	Андреев Андрей Борисович	17.02.2022 10:37:00				
22	18.02.2022 15:28:00	Другое	-	Установка	Тепловая энергия	15.02.2022	Цех: Согласовано	Богданчик Николай Леонтьевич	24.05.2022 15:24:00				
		HF7.		Гидрокрекинга									
23	21.02.2022 9:41:00	Другое	ЛАБ/ЛАБС	ЛАБС	Тепловая энергия	21.02.2022	Цех: Согласовано	Андреев Андрей Борисович	21.02.2022 10:16:00		ономии пара не обнаружено. ного потребления пара связано с геплением атмосферного		
24	22.02.2022 8:14:00	Другое	ЛАБ/ЛАБС	ЛАБС	Тепловая энергия	21.02.2022	Цех: Согласовано	Андреев Андрей Борисович	22.02.2022 8:27:00				
													J
Дополнит	ельная информация	История стат	гусов согл	асования Влож	кенные файлы								
Дата/в	ремя	Статус		А	Ответственное лицо			Примечание			Файл		
7.03.2022	11:53:00 В работе			Зол	отов Михаил Сергеевич	В настояц		ния динамической нормы по электр ны не предусматривает возможност					
	15:20:00 В работе				ютов Михаил Сергеевич	Принято д	для проведения анализа.						
	15:31:00 Зам.Тех.Дир: Сог	ласовано			ков Виктор Геннадьевич								
	16:17:00 HE B PAGOTE				тема								
15.03.2022	15:28:00 Отработано			Зол	ютов Михаил Сергеевич	В настояц		ния динамической нормы по электр ны не предусматривает возможност					
17.03.2022	11:53:00 Отработано			Зол	ютов Михаил Сергеевич	В настояц		ния динамической нормы по электр чы не предусматривает возможност					
0.01.2022	14:38:00 Создание/Редакт	гирование		Хит	айлов Андрей Олегович								
0.01.2022	14:38:00 Установка: Согла	асовано		Хит	айлов Андрей Олегович								
	8:30:00 Цех: Согласован	0		Мил	пишников Алексей Валерьеві	14							
12.01.2022													

БЛОК 2

Расчет оптимальных норм потребления энергоресурсов (энергетические базовые линии)

Нормативная документация

- 1. ГОСТ Р ИСО 50001-2012 (ИСО 50001:2011) Системы энергетического менеджмента. Требования
- 2. ГОСТ Р 57912-2017 (ИСО 50006:2014) Системы энергетического менеджмента. Измерение энергетических результатов на основе использования энергетических базовых линий и показателей энергетических результатов. Общие принципы и руководство

Энергоэффективность. Измерение энергетических результатов

Энергетический анализ. Информация

- Определение и количественная оценка энергетических потоков
- Определение и количественная оценка постоянных и переменных факторов
- Сбор данных

Индикаторы энергетических результатов

- Определение пользователей
- Определение энергетических результатов, подлежащих количественной оценке

Определение энергетических базовых линий

- Определение базового периода
- Определение и проверка энергетических базовых линий

Использование результатов и энергетических базовых линий

- Расчет улучшений энергетических результатов
- Предоставление информации об изменениях в энергетических результатах

Энергетический анализ. Определение энергетических базовых линий

Постоянные факторы (режимы)

Работа блоков совместно/1 из блоков (Л-24/6, ЛГ-24/7, ЛАБС)

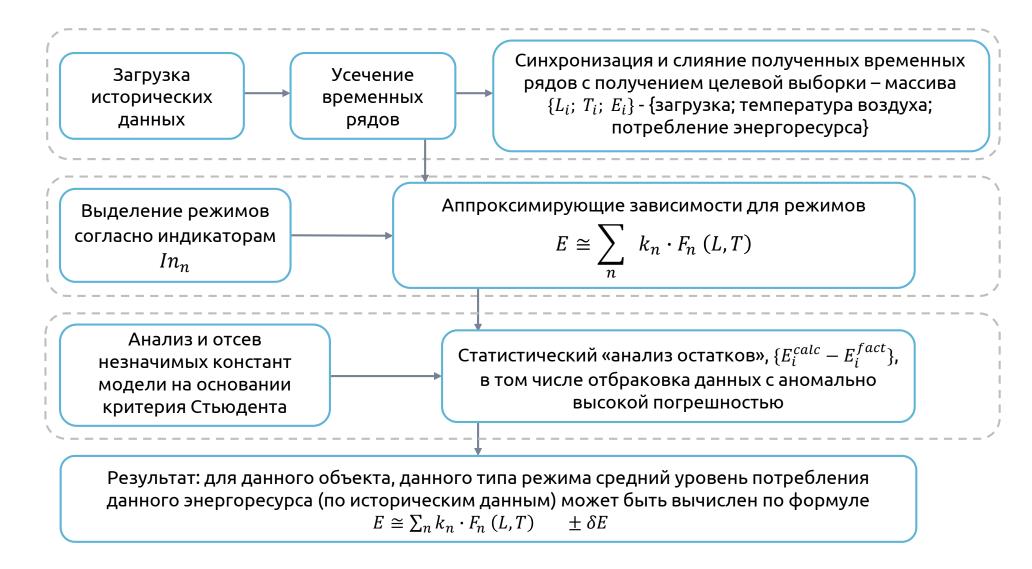
Регенерация/отсутствие регенерации осушителей (Секция 200. ЛК-2Б)

Включение блоков в работу (Л-24/6-блок стабилизации, АВТ-вакуумный блок)

Стандартный вид функциональной регрессионной зависимости для удельного потребления энергоресурса.

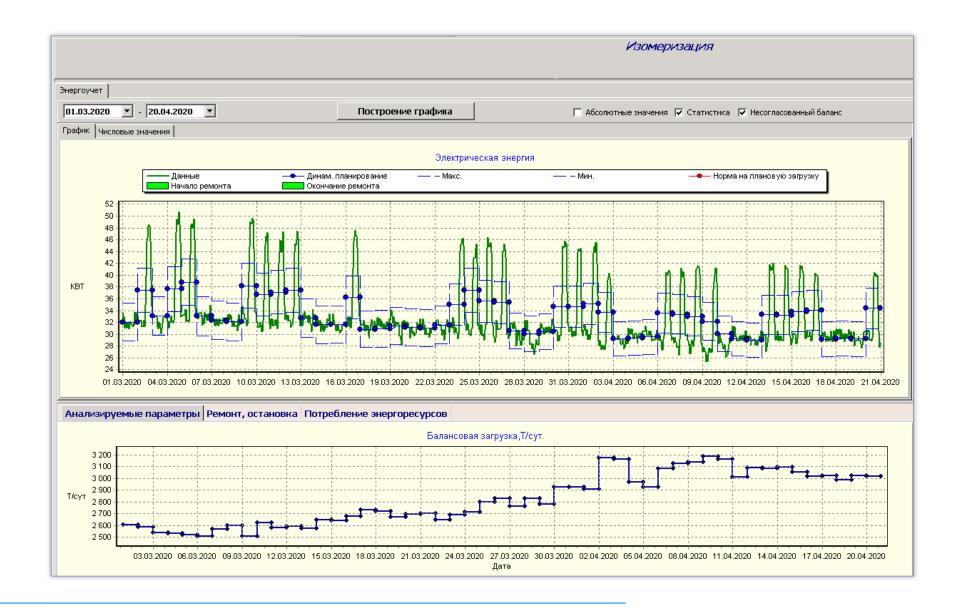
$$y = K + a_1 \cdot G + a_2 \cdot G^2 + a_3 \cdot T + a_4 \cdot \frac{T}{G}$$

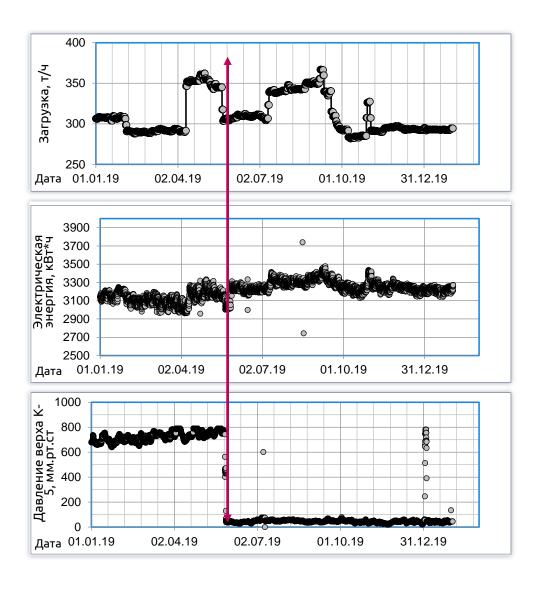
где a_1,a_2,a_3,a_4 , K – константы; G,T — факторы в зависимости (загрузка, т/ч, температура окружающего воздуха, C).

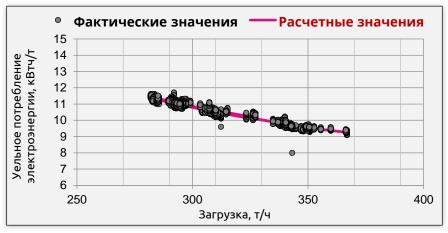

В отсутствие значимости температурного фактора и линейного характера зависимости для объектов может быть использована степенная зависимость

$$y=b_1\cdot G^{b_2}$$

где a_1, a_2, a_3, a_4 , K – константы; G – фактор в зависимости (загрузка, т/ч).


Установление статистических закономерностей потребления энергоресурсов на технологических объектах

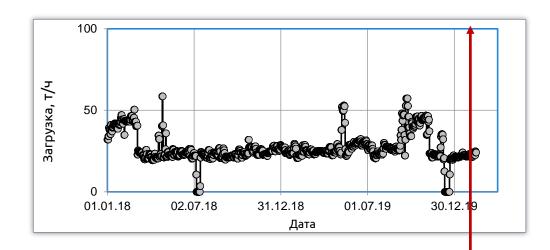

Результаты расчета норм с проверкой режимов

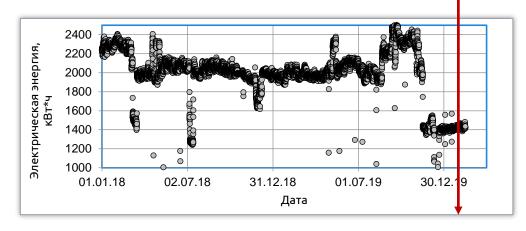


Выделение режимов в работе. Кейс: установка АВТ

Режим 1: Работа с вакуумным блоком

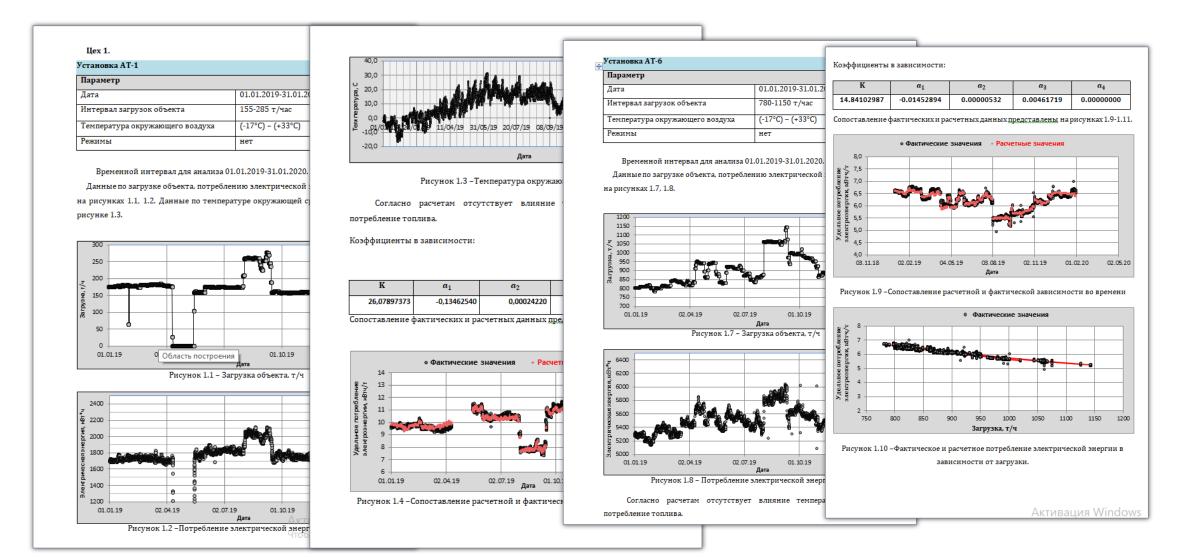
Режим 2: Работа без вакуумного блока



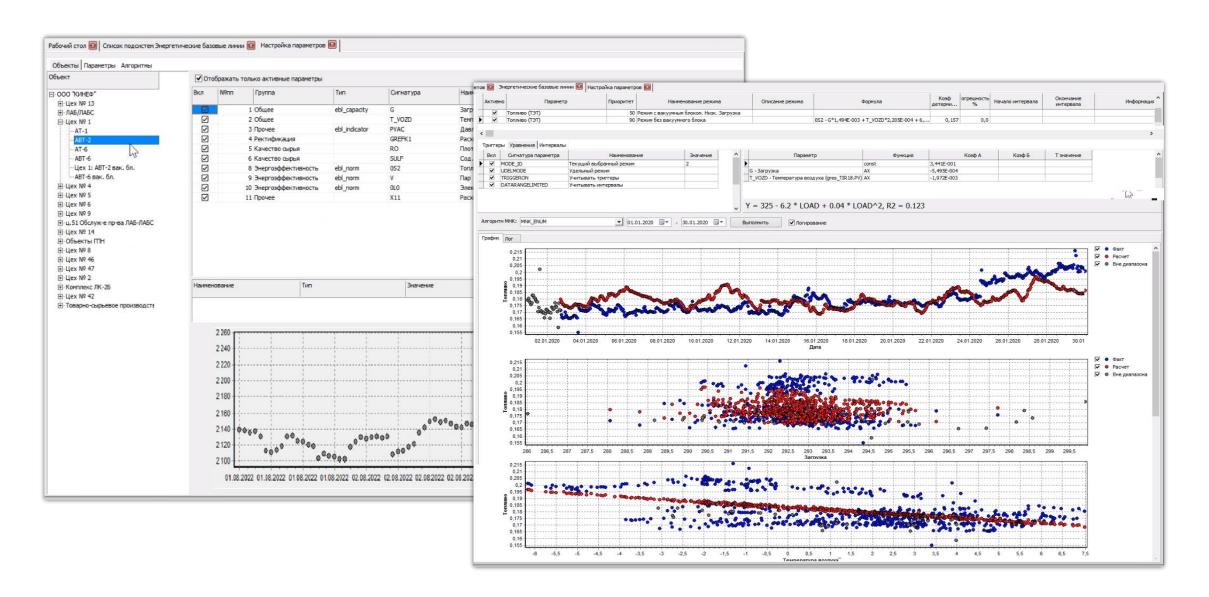

Выделение режимов в работе АВТ. Фактическое изменение потребления при смене режима

Выделение режимов в работе. Кейс: установка каталитического риформинга

Режим 1: Работа с компрессором

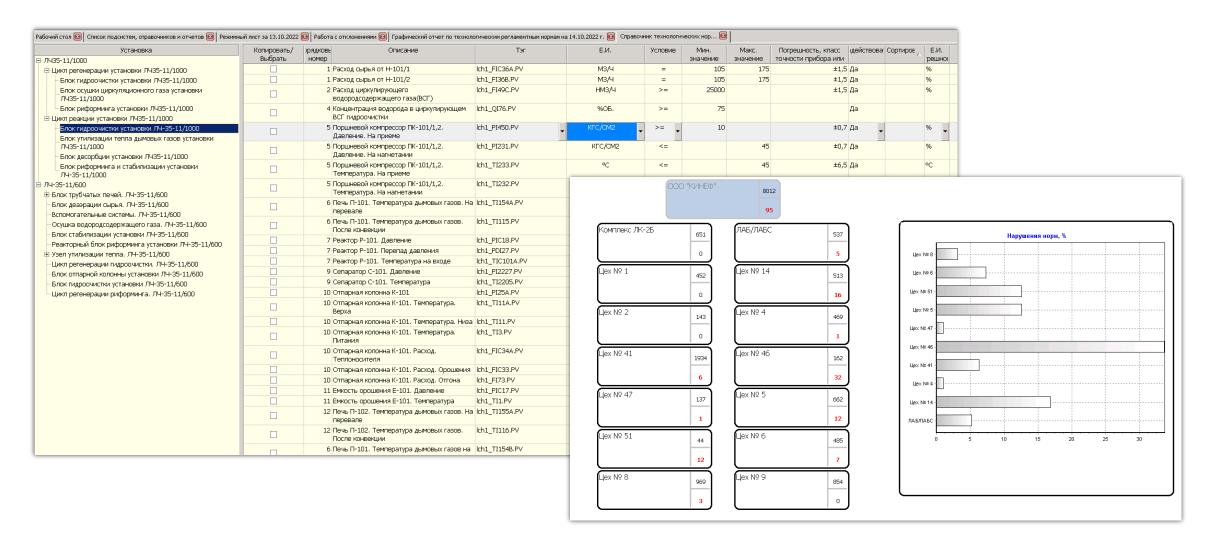


Режим 2: Работа без компрессора


Установление статистических закономерностей потребления энергоресурсов. Методика

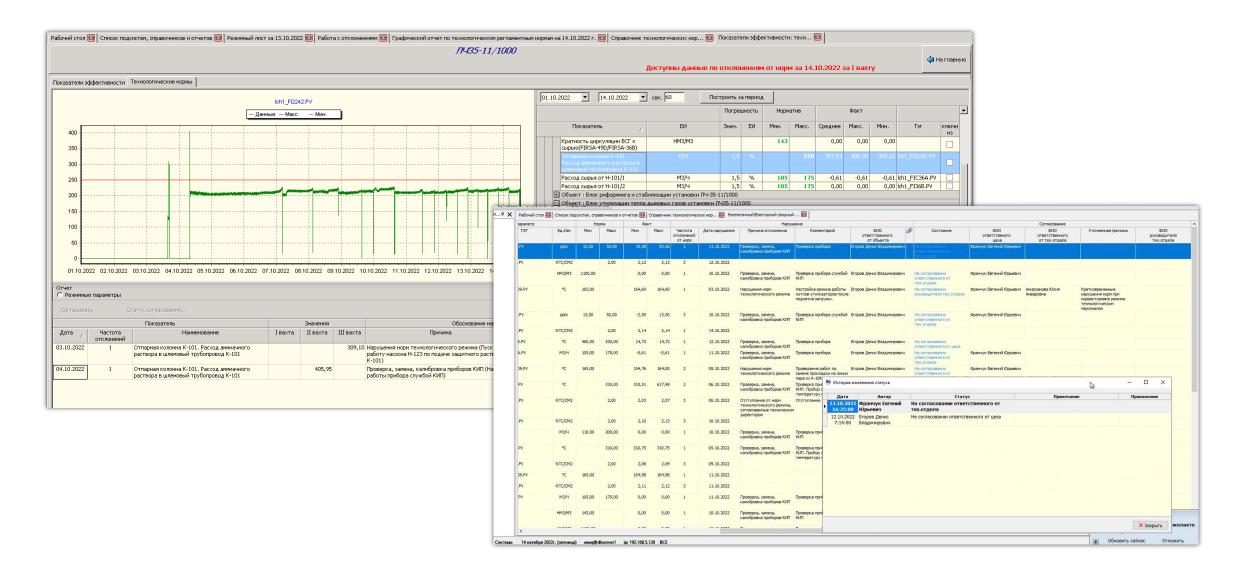
Платформа расчетов «Энергетических базовых линий»

Расчет удельных затрат

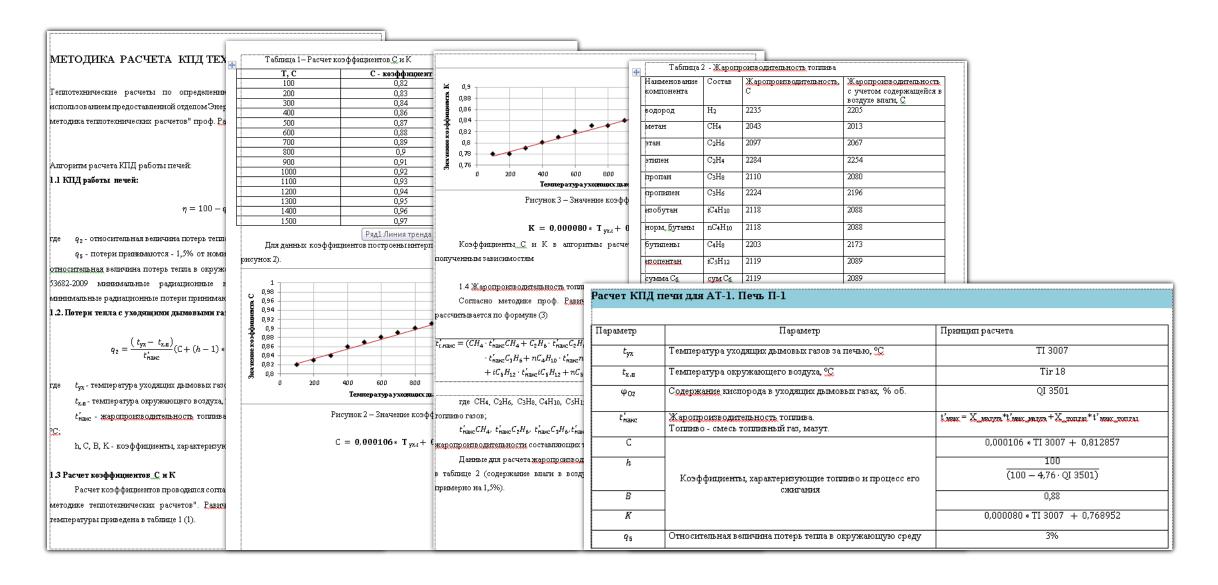


Месяц	Электрическая энергия, руб./кВт*ч	Тепловая энергия в паре 7-ата, руб./Гкал	Тепловая энергия в паре 13-ата, руб./Гкал	Тепловая энергия в паре 70-ата,	Невозврат н руб.	конденсата, ./м3	Мазут, руб./т.	Топливный газ, руб./т										
Январь				руб./Гкал														
Февраль										Затр	аты							
•																		
Март	4.70070	1105.04	Установка				Тепловая энер	пгия в папе								D. C. T.	Затраты, руб	Удельные
Апрель Май	4,79878	1185,84	-		Пар 7а	3	Пар 1		Пар ВД	Į.	Невозвратный	конденсат	Электрическая энергия	Топливо.Газ	Топливо.Мазут	Прибыль.Тепловая энергия		затраты, руб/т
Июнь					Гкал	руб.	Гкал	руб.	Гкал	руб.	мЗ	руб.	руб.	руб.	руб.	руб.		
Июль			ABT-2		82,4	97 722,2	98,1	117 174,053		-	256,600	21 587,758	344 430,091	523 250,820			1 104 164,922	150,0
Август			вак.бл. АВТ-2*		4,3	5 055,8	69,2	82 621,174	-	-	102,300	8 606,499	13 777,097	-			110 060,570	
Сентябрь			AT-1		41,3	48 978,0	21,4	25 618,839	-	-	90,100	7 580,113		263 164,383				
Октябрь			AT-6		112,8	133 785,3	36,3	43 350,791	-	-	215,100	18 096,363						
Ноябрь			ABT-6		166,3	197 167,9	218,9	261 511,848	-	-	546,800	46 002,284	606 483,827	1 281 451,518				
Декабрь			вак.бл. АВТ-6*		21,4	25 343,3	127,9	152 762,713	-	-	208,800	17 566,344	47 302,136	-			242 974,493	
			Битумное производство			-	-	-	-	-	-	-	-	-				31,11
			в т.ч. Битумная-1*		-	-	172,4	205 911,031	-	-	239,400	20 140,722	67 022,564	14 363,748			307 438,065	221,97
			в т.ч. Битумная-2*		-				-	-	-	-	24 592,957	-			24 592,957	
			ЛЧ-35-11/1000		10,0	11 915,6	83,6	99 876,805	-	-	130,800	11 004,204		627 900,984		- 348 435,959		
			ЛЧ-35-11/600		20,1	23 870,8	7,8	9 310,903	-	-	40,200	3 382,026					455 059,802	
			Л-35-11/300			-	26,1	31 136,698	-	-	36,200	3 045,506	164 191,349					
			Л-35-11/600		10,7	12 659,3	38,0	45 446,851	-	-	68,400	5 754,492		41 039,280			117 987,411	
			OLIK		12,0	14 249,5	56,5	6/512,054	-	-	96,000	8 0/6,480					506 207,588	
			Суммарные ксилолы I,II,III бл.		-	-	-		-	-	54,100	4 551,433						
			в т.ч. I бл.*		-	-	24.9	29 775,212	-	-	34,600	2 910,898						
			в т.ч. II бл.×		-	-	4,3	5 117,615	-	-	6,000	504,780		46 682,181			91 899,863	
			в т.ч. III бл.*		-	-	9,7	11 630,942	-	-	13,500	1 135,755		105 676,146				
			Суммарные ксилолы IV бл.		33,7	39 947,0	-	-	-	-	49,200	4 139,196		-				
			ЛГ-35-8/300Б		-	-	728,7	870 408,838	-	-	1 012,100	85 147,973		227 768,004	296 430,000			
			в т.ч. блок экстракции*		-	-	642,4	767 352,366	-	-	937,900	78 905,527	56 076,238	-	,			
			ГФУ		83,3	98 777,1	865,8	1 034 187,523	-	-	1 324,100	111 396,533		-			1 554 082,690	
			Гидроочистка бензиновых фра	экций	156,2	185 239,8	163,8	195 593,109	-	-	455,500	38 321,215		471 438,729				
			Изомеризация		9,7	11 508,2	169,1	201 975,299	-	-	249,000	20 948,370					1 301 613,502	
			Каталитический риформинг		93,8	111 172,7	-	-	437,499	615 980,594	712,500	59 942,625				- 618 087,957		
			ЛЧ-24-9/2000		-	-	143,0	170 816,864	-	-	198,600	16 708,218	78 187,667	3 590,937			269 303,686	
			Л-24-10/2000		12,9	15 251,1	127,5	152 267,776	-	-	195,800	16 472,654	992 675,217	383 717,268			1 560 384,015	
			Л-24/6		58,8	69 721,2	167,3	199 776,128	-	-	318,100	26 761,753		174 416,940				
			ЛГ-24/7		45,8	54 262,6	73,1	87 294,308	-	-	168,300	14 159,079		121 065,876			562 927,990	
			ПАРЕКС-1		19,5	23 110,6	17,5	20 860,741	-	-	52,700	4 433,651	1 001 834,062	90 799,407		- 68 857,749		
			ПАРЕКС-2		10,3	12 198,3	21,6	25 813,151	-	-	44,500	3 743,785		179 033,859		92 599,095		
			Элементарная сера ц.№9		146,1	173 198,8	-		-	-	222,400	18 710,512		37 448,343				
			УПСК			-	-	-	-	-	-	-	98 073,619	-			102 690,538	
			Производство ЛАБ		-	-	226,1	270 088,689	-	-	314,100	26 425,233			163 830,000	173 287,188		
			Производство ЛАБС		-	-	41,0	48 932,931	-	-	56,900	4 786,997	98 759,678				152 479,606	
			Гидрокрекинг		-	-		2 447 022,611	-	-	2 845,400	239 383,502				2 491 685,506	4 496 997,568	
			Элементарная сера ц.№41		-	-		-	369,432	520 145,711	486,100	40 895,593	110 730,656	65 662,848		432 032,598	305 402,210	
			Производство водорода		-	-	172,8	206 399,232	3 754,623	5 286 358,998	5 180,300	435 818,639	311 068,357			5 783 163,266	2 579 238,718	
			Вакуумная дистилляция		-	-		1 151 159,945	-	-	1 338,600	112 616,418		555 056,262		723 722,334	1 479 399,708	
			Висбрекинг		-	-	130,1	155 368,565	21,211	29 864,413	208,600	17 549,518		270 346,257		744 536,077	-91 682,904	
			Очистка сточных вод, м3		-	-	198,3	236 864,555		-	275,400	23 169,402		-			356 322,757	
			БОВ-6, м3		-	-	-	-	-	-		-	371 386,979	-			371 386,979	
			БОВ-1, м3		-	-	-		-	-	-		169 681,597	-			169 681,597	
			БОВ-2, м3		-	-	-		-	-	-		115 500,675	-			115 500,675	
			50B-3, M3		-	-	-		-	-	-		278 555,100				278 555,100	
			50B-4, M3		-					-		-	217 256,204	-			217 256,204	
			БОВ-7, м3		-	-	-		-		_		177 122,188					

БЛОК 3 Эффективность соблюдения технологических регламентных норм

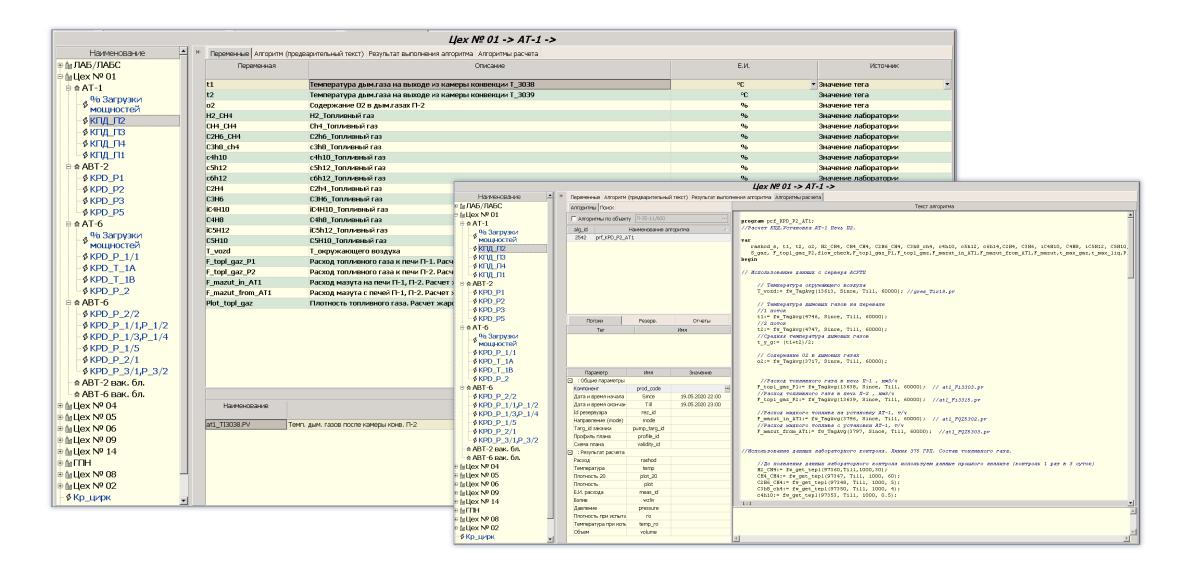

Анализ эффективности соблюдения регламентных норм

Анализ эффективности соблюдения регламентных норм

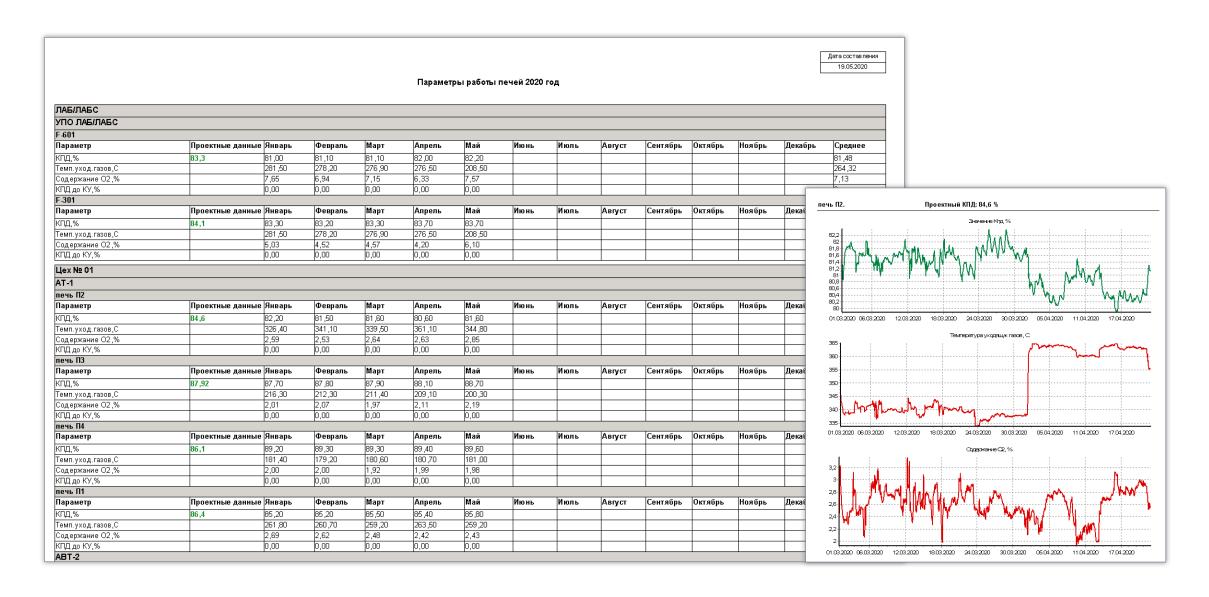


БЛОК 4

Эффективная работа оборудования. КПД технологических печей

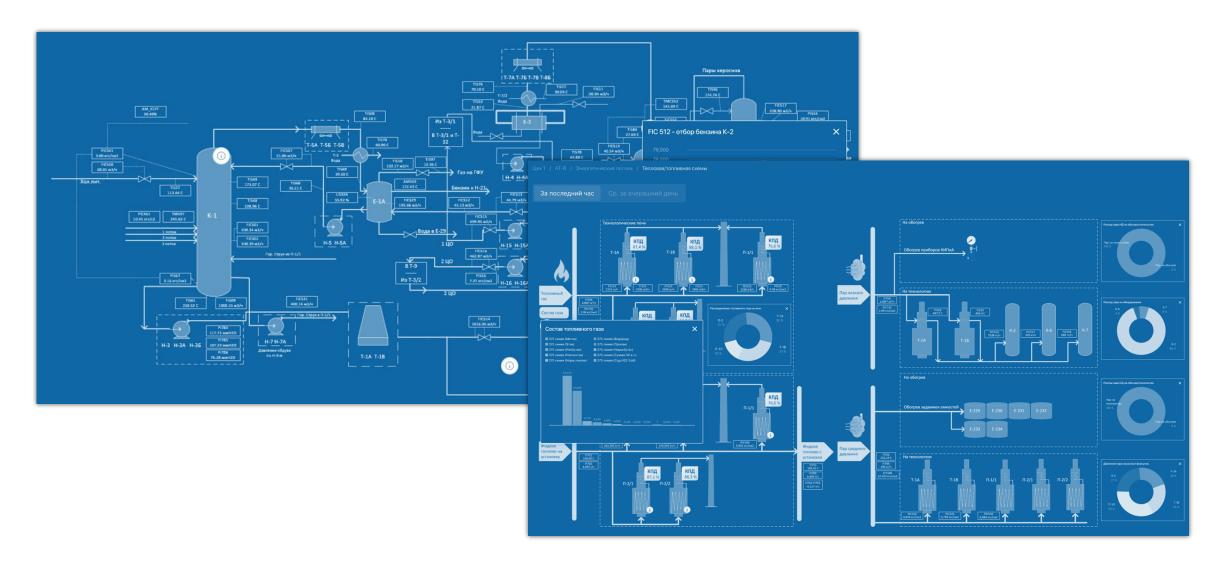

Методика расчета КПД технологических печей

Конструктор алгоритмов расчета


Расчетные значения КПД

Расчетные значения КПД

Система «Энергоменеджмент предприятия»


Формирование системы «Энергоменеджмент предприятия»

Формирование системы «Энергоменеджмент предприятия»

Формирование системы «Энергоменеджмент предприятия». КРІ процесса

Программа энергоэффективности/энергосбережения

Наименование мероприятия по энергосбережению и	Потені энергосбе	•	Требуемые инвестиции	Срок окупае
снижению потерь электроэнергии	в натур. выражении	тыс.руб.	тыс.руб.	мости, Год
В системе электроснабжения				
Оптимизация загрузки трансформаторов за счет отключения 6-ти трансформаторов	180 МВт ч	302,04	460,0	1,5
Автоматизация ЧРП воздухоохладителей нефтепродуктов АТ-1 (BX)	136,9 МВт ч	230	450	2,0
В системе сжатого воздуха				
Установка отдельного компрессора для битумного производства	162,55 МВтч	273,10	3 000	11,0
Замена поршневых компрессоров 4BM10-100/8 на винтовые с автоматизированным частотно-регулируемым электроприводом мощностью до 315 кВт	2 000 МВт ч	3 360	20 000	6,0
В системе теплоснабжения				
Установка конденсатоотводчиков на паропроводах	15 000 Гкал	3 465	1 700	0,5
Реконструкция бойлерной и системы отопления завода с заменой теплоносителя с пара на горячую воду 130/70°С и 95/70°С	72 520 Гкал	16 752	45 000	2,7
В системе топливообеспечения				
Замена горелок на печах технологических установок на более эффективные	10 500 <u>r.y.r</u>	15 960	16 200	1,0
Оптимизация загрузки технологических установок первичной переработки нефти	9 300 т.у.т	14 136	-	-

Программа энергоэффективности/энергосбережения

Nº n/n	Наименование мероприятия	Экономия, тыс. руб.	Инвестиции, тыс. руб.	Срок окупаемости, лет
	По системе электроснабжения			
1	Организация водооборотного цикла для охлаждения агрегатов турбокомпрессорной №1 (ТБ-1)	32 796,51	90 246,00	2,8
2	Автоматизация работы насоса №2.2 станции 1-го подъёма цеха №19	20 631,48	10 080,00	0,5
3	Автоматизация работы насоса №2 морской станции водоснабжения №100	3 020,19	1 535,70	0,5
4	Отключение насосов охлаждения печей цеха №2 в нерабочее время	2 505,84	0	0
5	Модернизация системы освещения предприятия	7 912,72	10 095,20	1,3
6	Мероприятие по установке устройств компенсации реактивной мощности в электрических сетях предприятия	2 554,16	6 273,50	2,5
7	Мероприятие по замене электродвигателей приточно-вытяжной вентиляции на менее мощные	1 225,77	3 188,20	2,6
8	Замена устаревших трансформаторов (ТМ), на энергосберегающие трансформаторы (ТМГ-12, ТМГ-33) при плановой замене	3 363,03	26 413,60	7,9
	По системе водяного теплоснабжения			
9	Организация рекуперации теплоты в системе вентиляции Э-2	44 316,71	466 139,80	10,5
10	Организация рекуперации теплоты в системе вентиляции 9-1	42 589,42	306 731,80	7,2
11	Организация рекуперации теплоты в системе вентиляции здания цеха № а, б	67 939,53	584 864,30	8,6
12	Повышение уровня теплозащиты ограждающих конструкций здания Э-2	6 028,66	148 882,70	24,7
13	Повышение уровня теплозащиты ограждающих конструкций здания Э-1	7 635,58	79 948,40	10,5
14	Повышение уровня теплозащиты ограждающих конструкций здания цеха № а, б	5 903,85	98 701,40	16,7
15	Повышение уровня теплозащиты ограждающих конструкций здания цеха № у	11 408,21	110 391,10	9,7
16	Повышение уровня теплозащиты ограждающих конструкций зданий УКИ	1 447,81	32 337,10	22,3
17	Реализация мероприятий режимной наладки объектов промплощадки	52 369,56	14 701,20	0,3
18	Восстановление изоляции магистральных трубопроводов теплосетевой воды	10 751,94	141 615,80	13,2
19	Режимная наладка тепловых сетей 19 цеха	377,03	1 500,00	4
20	Восстановление тепловой изоляции трубопроводов КОС	1 020,42	1 315,30	1,3
	По системе пароснабжения			
21	Замена трубопроводов магистрального паропровода и установка тепловой изоляции на сальниковые компенсаторы	13 304,25	103 630,10	7,8
22	Установка конденсатоотводчиков на паропотребляющем оборудовании	1 269,19	2 262,00	1,8
23	Установка конденсатоотводчиков на вводах системы пароснабжения	1 457,67	2 601,30	1,8
24	Установка термочехлов на запорно-регулирующей арматуре паропроводов	831,41	704,6	0,8
25	Восстановление изоляции внутрицеховых паропроводов	3 797,83	1 600,40	0,4
26	Повышение энергоэффективности использования пара в цехах	914,79	296,6	0,3
27	Мероприятия по причальной системе распределения пара	6 020,21	28 591,90	4,7

Простые решения сложных задач

Смирнова Дарья

product manager

smirnova_d_a@ntik.ru +7 (921) 638-73-78